

MAHATMA GANDHI UNIVERSITY, KERALA

Abstract

Bachelor of Science (Honours) Electronics with Computer Technology - Fourth Semester - Modifications to the Course Outcomes, Course Content, Mode of Assessment and Removal of a Course - Approved - Orders Issued.

ACA 16

No. 11127/ACA 16/2025/MGU

Priyadarsini Hills, Dated: 25.11.2025

Read:-1. U.O.No.5797/AC A16/2024/MGU, dated.27.06.2024.

- 2. Minutes of the meeting of the Expert Committee on Electronics (UG).
- 3. Orders of the Professor in charge of the Vice Chancellor under Section 10(17), Chapter III of the Mahatma Gandhi University Act 1985, dated. 18.11.2025.

ORDER

The syllabi of various Honours Under Graduate Programmes coming under The MGU-UGP (Honours) Regulations, 2024, have been approved vide paper read as (1) above and published on the website of the University.

The Expert Committee on Electronics (UG), discussed the need to modify the Course Details, Course Outcomes, Course Content and Mode of Assessment of DSC/DSE/SEC type courses. Also recommended to include Programme Title in the detailed syllabus page of SEC/VAC type courses, to rectify the typographical errors in the Course Code in the detailed syllabus page of the course MG4DSEECT204: Robotics. Also to rectify the Course Name of the course MG4DSEECT205: Continuous and Discrete Systems, in the Index Page and Total Marks for ESE of the VAC type course. Also recommended to remove the course MG4SECECT203: User Interface and User Experience for App Development, from the syllabus and to modify the References and Suggested Readings of the DSE type courses in the Fourth Semester syllabus of Bachelor of Science (Honours) Electronics with Computer Technology programme and has submitted recommendations vide paper read as (2) above.

(Recommendations are attached as Annexure)

Considering the urgency, sanction has been accorded by the Professor in charge of the Vice Chancellor, in exercise of the powers of the Academic Council vested upon him under Section 10(17), Chapter III of the Mahatma Gandhi University Act 1985, vide paper read as (3) above, to approve the said recommendations.

Hence, the Course Name, Course Code, Course Details, Course Outcomes, Course Content and Mode of Assessment of the said courses in the Fourth semester syllabus of **Bachelor of Science (Honours) Electronics with Computer Technology** programme stands modified to this extent.

Orders are issued accordingly.

SUDHA MENON J

ASSISTANT REGISTRAR III
(ACADEMIC)
For REGISTRAR

Copy To

- 1. PS to VC
- 2. PA to Registrar/CE
- 3. Convenor, Expert Committee, Electronics (UG)
- 4. JR 2 (Admin)/DR 2, AR 3 (Academic)
- 5. JR/DR/AR (Exam)
- 6. Tabulation/Academic Sections concerned
- 7. AC C1/AC C2 Sections
- 8. IT Cell 3/OQPM1 Sections
- 9. PRO/IQAC/Records Sections
- 10. Stock File/File Copy

File No. 109936/AC A16-3 /2025/ACA 16

Forwarded / By Order

Section Officer

Annexure

SEMESTER IV Index Page

Course Code	Title of the Course (Modified)	Type of Course DSC,	Credit	Hours / week	Hour Distribution/ week		on/	Page No.	
		MDC, SEC			L	T	P	0	
MG4DSEECT205	Continuous and Discrete Systems (Electronic systems and Programming Specialization) (For Physics Major Only) (Typograghical Error Corrected)	etc. No Change					9		
MG4SECECT203	User Interface and User Experience for App Development- Course Removed								

Course Name: Python Programming Course Code: MG4DSCECT200

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome (Modified)	Learning Domains	PO No.	Page No.
3	Understand the fundamentals of exception handling and apply to build robust and error resilient programs	No (Change	86

COURSE CONTENT

Content for Classroom Transaction (Units)

Module	Units	Course Description (Modified)	Hrs	CO No.	Page No.
3	3.1	Packages and Data Visualization: Packages in Python, importing modules from a package. Python Libraries: Importing Libraries Basic concepts in data visualization, Basic charts – Bar chart, Pie chart, line graph, Scatter plot and histogram, Packages and library functions for data	No	Change	87

		visualization (matplotlib/seaborn/Pandas)		
	3.2			
	3.3	No Change		
	3.4			
		Python Programming Lab:		
		1. Programs based on data types, Input & Output and Control Statements		
		2. Programs based on Arrays		
		3. Programs based on Strings		
		4. Programs based on Functions		
4		5. Programs based on Lists and Tuples	No Change	
		6. Programs based on Dictionaries		
		7. Programs to demonstrate basic plots		
		using matplotlib		
		8. Programs based on Exception handling		
		9. Programs based on Regular Expressions		
		10. Make a login form with tkinter		
5		Teacher Specific Content		

Course Name: IOT System Design Course Code: MG4DSCECT202

Course Details	Lecture	Tutorial	Practical	Others	Daga Na 4 02
(Modified)	3		1		Page No : 92

Module	Units	Course Description (Modified)	Hrs	CO No.	Page No.
1	1.1	Introduction to embedded system, Building blocks of IoT, Sensors & Actuators, Cloud based monitoring systems	No Change		92
	1.2	yers of IoT- Perception layer, Network layer, oud layer, Application layer			

	1.3	Things in IoT-Sensors and actuators, Application		
	1.4	Areas Familiarization IoT Gadgets in daily life - IP Camera, Smart lamp, Smart FAN, Automated water pump, Home automation and security	_	
	2.1	Operation and applications of sensors: IR sensor, LDR sensor, PIR sensor, Ultrasonic sensor, Gas sensor, Gyroscope sensor, Heart beat sensor (concept only),		
		Actuators and examples: hydraulic, pneumatic, magnetic, and mechanical (Concept level only)		
2	2.2	IoT supported hardware -ESP32, ESP 8266, Raspberry Pi Zero (specifications and features only)		
	2.3	Basic Concepts of IoT communication protocols – MQTT (subscribe/publish activity), CoAP, XMPP, DDS		
	2.4	IoT platforms- Blynk, ThingSpeak, Arduino cloud, FireBase		
	3.1	IoT classification-Consumer, Industrial, Commercial IoT, Agri IoT, medical IoT		
2	3.2	Applications - Home automation, Smart cities, smart power grid, logistics & transportation, agriculture, health and life style, Industry 2.0		
3	3.3	Challenges -Legal challenges, privacy issues, design ethics, environmental issues.		
	3.4	AI in IoT-Automated vehicles, Drone delivery system, smart wearable gadgets	No Change	
4	4.1	IoT System Design (Practical) (14 experiment out of 20)		
		1. Familiarization of development board ESP8266 and Arduino IDE		
		2. Blinking of a LED		
		3. Control LED using button switch		
		4. PIR sensor interfacing & alert using Blynk		93
		5. Ultrasonic sensor interfacing		
		6. Obstacle/infrared sensor interfacing and alert using Blynk		
		7. LM35 interfacing: Read temperature and display the measurement in serial monitor		
		8. Interface DHT11 sensor and display the output in serial monitor		
		9. Soil moisture sensor interfacing		
		10. Rain drop sensor interfacing		

	11. Servo motor with blynk control 12. Generate PWM signal and observe the output in a CRO	
	13. Brightness control of LED using PWM	
	14. DC motor interfacing with blynk	
	15. LCD display interfacing	
	16. LM35 interfacing with IoT (Blynk): Read temperature and display on Blynk dashboard	
	17. DHT11 sensor interfacing with IoT (Blynk): Display humidity and temperature on Blynk app	
	18. Soil moisture sensor interfacing with IoT (Blynk): Monitor soil condition remotely	
	19. Rain drop sensor interfacing with IoT (Blynk): Display rain status on mobile app	
	20. IoT-based Home appliances control using relay and Blynk app	
	One experiment, 21/22, is mandatory:	
	21. LED/Device control using Blynk server/app	
	22. LED/Device control using ThingSpeak	
5	Teacher Specific Content	

Course Name: ARM Based Embedded Systems

Course Code: MG4DSEECT200

CO No.	Expected Course Outcome	Learning Domains (Modified)	PO No.	Page No.
1		K		
2	No Change	N. Change	No Change	95
3		No Change	No Change	
4		A		

Module	Units	Course Description (Modified)	Hrs	CO No.	Page No.
4		Hands on session (Minimum: 8) - Interfacing with ARM Cortex M GPIO Control- 1. LED ON-OFF Control 2. LED Blinking Using Delay 3. LED Blinking Using External Interrupt 4. Switch Control of LED 5. Create running light 6. Interface with Temperature Sensor (LM35 / NTC) 7. IR Sensor Interface 8. Buzzer and LED Alert System 9. Traffic Light Controller 10. Relay Control – Drive a relay using a transistor interface 11. Seven Segment Display Interface The session should involve writing code in Keil 5 or Arduino IDE with ARM library and simulating the circuits in Proteus Simulator for simulation-based experiments. For hardware-based session deploy the code onto the actual ARM boards (Cortex M3, ARM 7, STM 32)	No Ch	ange	96
5		Teacher Specific Conte	nt		

MODE OF ASSESSMENT

1.Theory						
Max.Marks: 70 Duration: 2 Hrs						
Type of Questions	Number of Questions to be answered	Marks	Page No			
MCQ	16 out of 16	16 x 1 = 16	97			

Short Answer	6 out of 8	6 x 5 = 30	
Essay	2 out of 4	2 x 12 = 24	

Suggested Reading (Modified)

1	Valvano, Jonathan W. Embedded systems: introduction to ARM® Cortex (TM)-M microcontrollers. Jonathan W. Valvano, 2014.	Page No:
2	Mazidi, Muhammad Ali, et al. Freescale ARM Cortex-M Embedded Programming(Volume 3), MicroDigitalEd. com, 2016.	97
3	Abhilash Pandiankal, Introduction to ARM System ISBN-13979- 8326652256 , Kindle Edition by https://amzn.in/d/6NKRyNW	

Course Name: 3D Printing and its Applications

Course Code: MG4DSEECT201

MODE OF ASSESSMENT

B. End Semester Evaluation (ESE) (Modified)

1.Theory				
Max.Marks: 70 Duration: 2				
Type of Questions	Number of Questions to be answered	Marks	Page No	
MCQ	16 out of 16	16 x 1 = 16	99	
Short Answer	6 out of 8	6 x 5 = 30		
Essay	2 out of 4	2 x 12 = 24		

Course Name: Data Science for AI

Course Code: MG4DSEECT202

MODE OF ASSESSMENT

1.Theory			
Max.Marks: 70 Duration:			
Type of Questions	Number of Questions to be answered	Marks	Page No
MCQ	16 out of 16	16 x 1 = 16	100
Short Answer	6 out of 8	6 x 5 = 30	102

Course Name: Single Board Computers for IoT Applications

Course Code: MG4DSEECT203

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome (Modified)	Learning Domains (Modified)	PO No.	Page No.
1	Understand the architecture and programming of Arduino Uno, ESP 8266	No Change		
2	Develop expertise in Raspberry Pi interfacing	U		103
3	Explore single board computers and its real-world IoT applications	U	No Change	
4	No change	A		

Module	Units	Course Description (Modified)	Hrs (Modified)	CO No.	Page No.
	1.1	Types of Arduino boards (Uno, Nano, Mini, Mega) and pin configuration of Arduino uno, Installation of Arduino IDE and essential drivers, Programming using Embedded C.	No Cha	nge	103
1	1.2	Interfacing of Arduino Uno - turning ON LED using push button. Data collection from Sensors (IR Sensor, LDR, Ultrasonic Sensor)			
	1.3	Introduction to IoT, Basic building blocks, Cloud Services (Blynk/Arduino Cloud/Thing Speak)			
	1.4	ESP8266 Module, Connection with IoT Cloud Platforms. Widgets and Dashboard Creation using Cloud Platforms			
2	2.1	Raspberry Pi Overview – Models, Port and Pin Configuration, On-board Components - processor,			

		RAM, SD card slot, Socket			
	2.2	Raspbian OS-Installation Steps			
	2.3	Basic Programming with Python on Raspberry Pi - printing a string, basic calculator, making simple expressions (area, volume, heat conversion)			
	2.4	GPIO Control using Python – LED Toggling, Push Button Interfacing, Integration of Raspberry Pi with IoT platforms – ThingSpeak			
	3.1	Installation of open CV and camera interfacing			
2	3.2	Advanced Hardware Tools – Tinkerboard, BeagleBone, Banana Pi: Features and Applications			
3	3.3	NVIDIA Jetson Nano: Features and Applications			
	3.4	Raspberry Pi Applications – Home Automation, Security Systems, Real- Time Sensor Monitoring			
	4.1	Blinking of LED with micropython Using Raspberry Pi/Arduino/ESP8266 (Either hardware or simulator)			104
	4.2	Creating Traffic light using Raspberry Pi/Arduino/ESP8266 (Using hardware or simulator)			
4			15	No Change	
	4.3	Buzzer interfacing Using Raspberry Pi/Arduino/ESP8266		- 363	
		(Either hardware or simulator)			
	4.4	Installation of essential software package- office tools, Arduino IDE, Image editor(any one)			
5		Teacher Specific Content			

MODE OF ASSESSMENT

B. End Semester Evaluation (ESE) (Modified)

1.Theory						
Max.Marks: 70	Max.Marks: 70 Duration: 2 Hrs					
Type of Questions	Number of Questions to be answered	Marks	Page No			
MCQ	16 out of 16	16 x 1 = 16				
Short Answer	6 out of 8	6 x 5 = 30	104			
Essay	2 out of 4	2 x 12 = 24				

References (Modified)

1. Mike Cheich, Arduino Book for Beginners, Programming Electronics Academy, 2020.		
2. Simon Monk, Raspberry Pi Cookbook, 4th Edition, O'Reilly Media Inc., 2022.	Page No.	
3. Liz Clark, Practical Tinker Board: Getting Started and Building Projects with the ASUS	104	
Single-Board Computer, Apress, 2020.		

Suggested Reading (Modified)

1	Marco Schwartz, Internet of Things with Arduino Cookbook, Packt Publishing, 2016.	
2	Ashwin Pajankar, Internet of Things with Arduino & Bolt, BPB Publications, 2019.	Dage No.
3	Derek Molloy, Exploring BeagleBone – Tools and Techniques for Building with Embedded Linux, 2nd Edition, Wiley, 2019.	Page No: 104
4	Yogesh Chavan, Programming the BeagleBone, BPB Publications, 2021.	
5	Agus Kurniawan, IoT Projects with NVIDIA Jetson Nano: AI-Enabled Internet of Things Projects for Beginners, Apress, 2021.	

Course Name: Robotics

Course Code (Modified)	MG4DSEECT204	Page No. 105
---------------------------	--------------	---------------------

CO No.	Expected Course Outcome (Modified)	Learning Domains (Modified)	PO No.	Page No.
1	Explain the characteristics, and classification of robots and their applications	No Change		
2	Describe the working principles of robot motion, degree of freedom, and actuation mechanisms	U, A	No Change	105
3	Illustrate the robot design process, role of sensors, and basic control systems	No Change		

Evaluate the impact of robotics in industry and society, considering ethics and future trends

An

Module	Units (Modified)	Course Description (Modified)	Hrs (Modified)	CO No. (Modified)	Page No.
	1.1	Basics of Robotics- definition, history, evolution and characteristics of robotic system	2	N. Cl	
1	1.2	Importance of robotics, difference between robots, machines, and automation, Early robotic systems and major milestones, Generations of robots and technological growth	2	No Change	
1	1.3	Components of a Robotic system, Structure: manipulator, joints, end effector, controller, sensors Overview of hardware and software components	3		105
	1.4	Classification of Robots - Based on structure: articulated, SCARA, cylindrical, Cartesian Based on application: industrial, service, medical, humanoid	No Change		
	2.1	Types of Robots: Industrial robots, mobile robots, humanoid robots, collaborative robots Concept of self-healing robots and its applications	4		106
	2.2	Work space, Degrees of Freedom & Kinematics, Concept of DOF, joints, links, Basic principles of motion, selection of robot based on workspace	5		
2	2.3	Locomotion Systems, Wheeled, legged, tracked, and aerial robots Advantages and limitations of each locomotion type	4		
	2.4	Actuators and Motion Control Basics of actuators: electrical - servo motors, DC motor, stepper motor, linear motor, hydraulic & pneumatic systems, Introduction to path planning	No Change		
3	3.1	Design Process of Robots: Conceptual design, modelling, prototyping, testing, implementation	No Change		
	3.2	Sensors and Perception: Role of sensors in	6		

		robots, Types: IR proximity, computer vision, ultrasonic, touch sensors. Environmental sensors – light, temperature, humidity and flammable gas sensors.			
	3.3	Control System basics, Overview of feedback and control loops, Types of control systems in robotics, On-Off Control systems (basic concepts)	5		
	3.4	Software and Programming Concepts Role of software in robotics, Overview of common robotics programming platforms (conceptual, no coding)	6		
	4.1	Industrial Applications: Assembly, spot welding, packing, material handling, painting, inspection	3		
4	4.2	Service and Medical Robots, Domestic, educational, surgical, rehabilitation robots	2		
	4.3	Advanced Applications: Space exploration, underwater robotics, defense and surveillance	2		
	4.4	Future Trends and Ethical Issues, Human- robot collaboration, AI integration, ethics and safety	3	4	
5		Teacher Specific Content			

MODE OF ASSESSMENT

1.Theory					
Max.Marks: 70 Duration: 2 H					
Type of Questions	Number of Questions to be answered	Marks Page			
MCQ	16 out of 16	16 x 1 = 16			
Short Answer	6 out of 8	6 x 5 = 30	106		
Essay	2 out of 4	2 x 12 = 24			

Course Name: Continuous and Discrete Systems

Course Code: MG4DSEECT205

Course Details	Lecture	Tutorial	Practical (Modified)	Others	Page No.
(Modified)	3		1		108

MODE OF ASSESSMENT

B. End Semester Evaluation (ESE) (Modified)

1.Theory				
Max.Marks: 50 Duration: 1.5				
Type of Questions	Number of Questions to be answered	Marks	Page No	
Part A: Short Answer	10 out of 14	10 x 2 = 20	100	
Part B: Short Essay	6 out of 8	6 x 5 = 30	109	

Course Name: Wireless Technology Course Code: MG4DSCECT203

CO No.	Expected Course Outcome (Modified)	Learning Domains (Modified)	PO No.	Page No.
1	Understand basic RF concepts, spectrum usage, and modulation techniques used in wireless communication	No Change		
2	Understand wireless channel effects, signal quality measures, and the characteristics of modern wireless communication systems	No Change		111
3	Apply RF circuit concepts and wireless communication standards to interpret and simulate basic RF system A blocks		No Change	111
4	Apply RF and wireless communication concepts using analog circuits and microcontroller platforms	A		

Module	Units	Course Description (Modified)	Hrs	CO No.	Page No.
	1.1	Introduction to RF Systems: Definition and basic concepts of RF, Components of RF system, Applications of RF in communication, radar, IoT, and wireless devices, Advantages and challenges of RF systems			
1	1.2	RF Spectrum and Regulations: RF spectrum overview (frequency ranges and their uses), Spectrum allocation and bands (ISM, cellular, satellite), Need for regulation in RF communication, national and international regulatory bodies (TRAI, FCC, ITU), Licensed and unlicensed bands	No Change		
	1.3	Analog Modulation and Demodulation Techniques: Need for modulation Types of modulation-AM, FM, PM (Derivations not required). AM Demodulation			
	1.4	Digital Modulation: Types of modulation- ASK, FSK, PSK, QPSK, QAM (qualitative concepts: constellation diagrams, bandwidth vs data rate trade-off)		No Change	111,
	2.1	Wireless Communication Channels, Path Loss, Interference, Fading		Change	112
	2.2	Power in dB and dBm. Noise & SNR, Impact on digital BER (qualitative only)			
2	2.3	Link budget basics and range factors RSSI (Received Signal Strength Indicator) and signal quality assessment			
	2.4	Wireless Communication Systems Cellular Networks, Wi-Fi, Bluetooth, Other Personal Area Networks (PANs)			
3	3.1	RF Components Antennas, Amplifiers, Filters			
	3.2	RF Circuit: Oscillators (Basic Concept, purpose, tank circuit, crystal oscillators) Mixers (Basic Concept, purpose, diode mixer and transistor mixer)			
	3.3	Communication Standards and Protocols Overview of major wireless standards: GSM, LTE, 5G Wi-Fi, Protocols and their applications in			

		wireless communication	
	3.4	Design and Implementation of RF Systems Basics of RF circuit design, Simulation tools and techniques	
		Practicals: Any Eight from 4.1 and 4.2	
	4.1	Use hardware or simulation using LTspice or equivalent. 1 Infrared LED Remote Control Circuit Implementation 2 Resonance Study Using a Colpitts LC Oscillator 3 AM Modulation and Envelope Detection 4 Low-Pass RF Filter Design and Frequency Response Characterization 5 Band-Pass RF Filter Design and Frequency Response characterization	
4	4.2	 6 RF Spectrum Observation Using RTL-SDR Wireless Experiments Using Microcontrollers (Arduino/NodeMCU/ESP32) 1 Antenna and Range Testing Using NRF24L01 Wireless Module 2 Wi-Fi-Based LED Control Using NodeMCU/ESP32 3 RF Communication Using FS1000A and XY-MK Modules 4 Bluetooth Communication Using HC-05 with Arduino/ESP32 5 Wireless Sensor Data Transmission Using Microcontrollers (Temperature, Humidity or Potentiometer voltage) 6 NFC Card Reading Using PN532 Module 7 Cellular IoT Connectivity Using A7672S 4G LTE Module 	
	Tools		
5	Teacher sp	pecific content	

MODE OF ASSESSMENT (Modified)

A.Continuous Comprehensive Assessment (CCA)

2.Practical	Page No
Total Marks: 15	112

B. End Semester Evaluation (ESE)

2.Practic	al	
Total Marks: 35	Duration: 2 Hrs.	
a. Viva - 10 Marks b. Lab Report - 10 Marks c. Demonstration - 15 Marks		Page No 112,113

Course Name: Computer Organization

Course Code: MG4DSCECT204

COURSE CONTENT

Content for Classroom Transaction (Units)

Module	Units	Course Description	Hrs (Modified)	CO No.	Page No.
	1.1		5		
1	1.2				
	1.3			No	
	2.1	No Change	No Change	Change	114,115
2	2.2				
	2.3		4		
5	Teacher Specific Content				

MODE OF ASSESSMENT

B. End Semester Evaluation (ESE) (Modified)

1.Theory

Max.Marks: 50 Duration			n: 1.5 Hrs.
Type of Questions Number of Questions to be answered		Marks	Page No
Part A: Very Short Answer	10 out of 10	10 x 1 = 10	116

Part B: Short Answer	4 out of 6	4 x 5 = 20	
Part C: Essay	2 out of 3	2 x 10= 20	

2.Practical

Total Marks: 35 Duration	on: 1.5Hrs. Page N	No
a. Viva - 10 Marks b. Demonstration - 15 Marks c. Record -10 Marks	116	

Course Name: Circuit Simulation and PCB Design

Course Code: MG4SECECT200

Programme BSc (Hons) Electronics with Computer Technology	Page No : 117
---	----------------------

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome (Modified)	Learning Domains (Modified)	PO No.	Page No.
1	No Change	No Change		
2	110 Change	U	No Change	117
3	Familiarization of simulation and prototyping software for PCB design	U		
4	Removed			

Module	Units	Course Description (Modified)		CO No. (Modified)	Page No.
1	1.1	Fundamentals of Printed Circuit Board Design. Types of PCB -Single Sided Boards, Double Sided, multilayer PCB	No Change		117, 118
	1.2	Identification and labelling of components in PCB-			

		Resistor, Capacitor, Inductor, Diode, Transistor and IC			
	1.3	Study of SMD Components, Identification of resistors, capacitors and transistors in Surface Mount PCB			
	1.4	PCB Substrate material selection, layer stack-up, copper cladding			
	2.1	Basic design rules for PCB design, exporting PCB format – GERBER file generation			
	2.2	Raw PCB preparation for printing – cutting, polishing, surface cleaning, marking of mounting screw position, selection of enclosure			
2	2.3	Thermal print transfer, copper etching and solder mask preparation			
	2.4	Drilling and Plating - Through-Hole Drilling, Automated Drilling Machines, Through-Hole Plating	No change		
	2.5	Testing of PCB – continuity test, short and open circuit test, finalizing PCB with protective coating			
	3.1	Brief introduction of various simulators: EasyEDA, Proteus, ki CAD (Any One) Schematic capturing – Ohm's law, voltage divider, LED with resistor.			
	3.2	Selection of components in simulation software, custom made footprint, assigning footprint to components, net listing			
3	3.3	PCB layout designing, auto routing and manual routing, assigning specific text (silkscreen) to design, generating Bill of Materials (BOM)	No	3	
	3.4	Exporting different layers of PCB – PDF, GERBER file	Change	3	
	3.5	Introduction to soldering, assembling of a simple PCB		3	
4		Teacher Specific Content			

Course Name: PCB Design & 3D Printing

Course Code: MG4SECECT201

Programme	BSc (Hons) Electronics with Computer Technology	Page No : 119
-----------	--	----------------------

Course Details	Lecture (Modified)	Tutorial	Practical	Others	Page No.
(Modified)	3				119

Module	Units	Course Description	Hrs (Modified)	CO No.	Page No.
3	3.1		No Change	No	
3	3.2	No Change	7	Change	120
4	Teacher Specific Content				

Course Name: Solar Technology and Applications

Couse Code: MG4SECECT202

Programme BSc (Hons) Electronics with Computer Technology	Page No : 121
---	----------------------

CO No.	Expected Course Outcome (Modified)	Learning Domains (Modified)	PO No.	Page No.
1	Understand the components and working principles of photovoltaic (PV) based power plants	No Change		
2	Interpret energy consumption data to estimate power requirements and outline the basic design of a solar power plant			
3	Recall common faults in solar power systems and identify appropriate troubleshooting techniques	K	No Change	121
4	List standard procedures and tools used in the installation and maintenance of a solar power plant	К		

Module	Units	Course Description (Modified)	Hrs	CO No.	Page No.				
	2.1	On-grid PV System Configuration, OFF grid PV System Configuration	No Change				1		
2	2.2	PV System Design: Site Assessment, Sizing, Performance Estimation							
	2.3	Hybrid PV System Configuration							
	2.4	Electrical Wiring, Safety Practices, Solar Power Regulations							
	3.1	Solar PV in Electric Vehicles and Water Pumping Systems			121,122				
	3.2	Monitoring, Data Analysis, and Troubleshooting of PV Systems							
3	3.3	Emerging Trends - Familiarisation of Organic Photovoltaics (OPVs), Quantum Dot Solar Cells							
	3.4	Case Study Report on Implementation, Maintenance and Performance Analysis							
4	Teacher Specific Content								

Course Name: User Interface and User Experience for App Development

Course Code: MG4SECECT203

Course Removed	Page No : 123-125
----------------	--------------------------

Course Name: Multimedia Electronics

Course Code: MG4SECECT204

Programme	BSc (Hons) Electronics with Computer Technology	Page No : 126
-----------	--	----------------------

Course Name: Environmental Monitoring using Sensors Course Code: MG4VACECT200

Programme BSc (Hons) Electronics with Computer Technology	Page No : 128
---	----------------------

MODE OF ASSESSMENT

1.Theory		Daga No 120
Max.Marks: 50	Duration: 1.5 Hrs.	Page No.129